How To Find a Formula For a Set of Numbers - Island of Sanity

Island of Sanity



Education

How To Find a Formula For a Set of Numbers


Perhaps you have seen one of those math problems that says, "What's the next number in this series: 2, 6, 12, 20, ...". Or in the real world, scientists and engineers routinely find a set of numbers through experiments and would then like to find a formula that fits these numbers. A few years ago I developed a simple (though admittedly sometimes tedious) technique for finding a formula to fit a set of numbers.

Disclaimer: While I developed this technique myself, the mathematics behind it is simple enough that I would not be in the least surprised to learn that someone else invented it before me. If anyone reading this is aware of this or a similar technique being published elsewhere, I'd be interested to here about it.

A mathematically astute person might immediately object that what I am saying is impossible, that there is no "one formula" that fits any given set of numbers. This is quite true. What this technique finds is the simplest polynomial that fits the numbers. A polynomial is an equation in the form

a0 + a1n + a2n2 + a3n3 + a4n4 + ...

To explain my technique, let's work through an example. Suppose you are given the following series of numbers and want to find a formula for them, and then compute the next number in the sequence.

2, 8, 9, 11, 20

The first step is to arrange them in a column. To the left of this column we write an ascending list of counting numbers, like this:

1 2
2 8
3 9
4 11
5 20

We number the column with the original values "0". We then create a column 1, where each value is the difference between each pair of values in column 0. Always take the lower number minus the upper number. That is, we first compare the first two numbers: 2 and 8. 8 - 2 = 6, so we write 6 to the right of and somewhat between 2 and 8. Then we compare the third number, 9, to the second number 8. 9 - 8 = 1. We proceed down the column this way, like so:

0 1
1 2
6
2 8
1
3 9
2
4 11
9
5 20

Now we make a column 2 by taking the differences between the values in column 1, like so:

0 1 2
1 2
6
2 8 -5
1
3 9 1
2
4 11 7
9
5 20

Note that negative results -- as in 1 - 6 -- are normal and expected.

We continue making new columns in this way until all the values in a column are the same. In this case, that just takes one more column.

0 1 2 3
1 2
6
2 8 -5
1 6
3 9 1
2 6
4 11 7
9
5 20

Recall that subtracting a negative is the same as adding a positive. Thus 1 minus negative 5 = 1 + 5 = 6.

What happens, you may ask, if we never reach a point where all the numbers in a column are the same? Simple: sooner or later we will get to the point where there is only one number in the column. As this number must always be the same as itself, then we are done. More on this later.

We are now ready to construct the first term of the polynomial. The column number where we stopped is the power of n. In this case we stopped at column 3, so the first term involves n3. We multiply this by the value in the column divided by the factorial of the column number. (A "factorial" is the product of all the integers from 1 to that number. For example, 5 factorial -- which is written "5!" -- is 5 x 4 x 3 x 2 x 1 = 120.) The value in this column is 6 and 3! is 6, so our first term is:

6 / 3! x n3
= 6 / 6 x n3
= n3

Now we evaluate this term for 1, 2, 3, and so on, and subtract each result from the corresponding starting value.

We started with value #1 was 2. So we plug 1 into n3 = 13 = 1, then subtract this from 2, 2 - 1 = 1.

Value #2 is 8. So we plug 2 into n3 = 23 = 8. Subtract this from 8, 8 - 8 = 0.

We proceed thus through all the values:

Original - n3
1 2 - 13 = 2 - 1 = 1
2 8 - 23 = 8 - 8 = 0
3 9 - 33 = 9 - 27 = -18
4 11 - 43 = 11 - 64 = -53
5 20 - 53 = 20 - 125 = -105

We create a new table from these values, calling these our new column 0. Like so:

0
1 1
2 0
3 -18
4 -53
5 -105

Now we go through the same process as we did for the first table.

0 1 2
1 1
-1
2 0 -17
-18
3 -18 -17
-35
4 -53 -17
-52
5 -105

Applying the same rules gives our second term:

-17 / 2! x n2
= -17/2 x n2

Note that this table was completed in fewer columns than the first table. That is, the first table ended with column 3, while this table ended with column 2. Every table must end with fewer columns than the previous table. If that doesn't happen, you have made an arithmetic mistake. (Otherwise you could get two n3 terms or whatever, which doesn't make sense.)

Again we plug the successive integers into this term and subtract from the starting values. Note we subtract with the values that we started with on this table -- we don't go back to the original values. Note that we are subtracting a negative, which is the same as adding a positive.

Original - -17/2 n2
1 1 + 17/2 12 = 1 + 17/2 = 19/2
2 0 + 17/2 22 = 0 + 34 = 34
3 -18 + 17/2 32 = -18 + 153/2 = 117/2
4 -53 + 17/2 42 = -53 + 272/2 = 83
5 -105 + 17/2 52 = -105 + 425/2 = 215/2

We build a new table with these values and go through the whole process again:

0 1
1 19/2
49/2
2 34
49/2
3 117/2
49/2
4 83
49/2
5 215/2

Giving our next term as:

49/2 / 1! x n1

= 49/2 n

Plug integers into this term to get the next table:

Original - 49/2 n
1 19/2 - 49/2 x 1 = 19/2 - 49/2 = -15
2 34 - 49/2 x 2 = 34 - 49 = -15
3 117/2 - 49/2 x 3 = 117/2 - 147/2 = -15
4 83 - 49/2 x 4 = 83 - 98 = -15
5 215/2 - 49/2 x 5 = 215/2 - 245/2 = -15

Building another table and following through the process yields the simple result:

0
1 -15
2 -15
3 -15
4 -15
5 -15

This is simple, of course, because column 0 already contains all the same value, so we are quickly done.

This gives a final term of:

-15 x n0

= -15

(Recall that any number to the zero power is simply one, and can be dropped from the expression.)

Once we get a table that is complete in the zero column, we are done. So now we put all these terms together to get the full equation:

n3 - 17/2 n2 + 49/2 n - 15

To check, try this on each value:

Original Formula
1 2 13 - 17/2 x 12 + 49/2 x 1 - 15 = 1 - 17/2 + 49/2 - 15 = 2
2 8 23 - 17/2 x 22 + 49/2 x 2 - 15 = 8 - 34 + 49 - 15 = 8
3 9 33 - 17/2 x 32 + 49/2 x 3 - 15 = 27 - 153/2 + 147/2 - 15 = 9
4 11 43 - 17/2 x 42 + 49/2 x 4 - 15 = 64 - 136 + 98 - 15 = 11
5 20 53 - 17/2 x 52 + 49/2 x 5 - 15 = 125 - 425/2 + 245/2 - 15 = 20

To find the next value in the table is now simply a matter of plugging 6 into the formula:

Original Formula
6 ? 63 - 17/2 x 62 + 49/2 x 6 - 15 = 216 - 306 + 147 - 15 = 42

And we see that the answer is the near-mythical value, 42.

Some real-world considerations

Coming to a single value in a column

As I noted earlier, a table is complete when all the values in a column are the same. If you come to a single value in a column, then it is the same as itself, and the table is complete. Mathematically, this is a perfectly valid solution. But if this happens, it should introduce some doubt into your mind. Do the numbers really follow some pattern, or am I just coming up with a formula to fit a set of random numbers? It is, after all, possible to come up with a formula for any set of numbers. The fact that this technique works should demonstrate that: pick any set of numbers, run them through this method, and you will get a formula to describe them. If you get to a column with two or three numbers the same, this is a good indication that there really is a pattern described by this formula. You would be unlikely to get such a result by chance.

Note this also illustrates the fact that any problem asking "what's the next number in this sequence" has an infinite number of possible answers. If someone gives you the sequence, say, "1, 4, 9, 16", you could run them through the above process and get the answer that the person is probably looking for: the rule is n2 so the next value is 25. But you could also invent any number as the next number in the sequence, say 42, and come up with a rule for "1, 4, 9, 16, 42". Feel free to work it out. It comes out to:

17/24 n4 - 85/12 n3 + 619/24 n2 - 425/12 n + 17

and the next term is then 121.

So if you want to be obnoxious, the next time you are given a quiz of "find the next number in the series" problems, just pick any number you like and fill it in, and you'll be completely correct. You'll probably get a failing grade on the test, but you can enjoy the smug satisfaction of knowing you were right.

Rouding errors

In the above discussion I've been assuming that all numbers were exact. For a math problem, this would normally be the case. But if you've gotten a set of numbers from real-world measurements, there is probably some margin of error on your measurements. In this case, you run into an additional problem: If two numbers look close, are they equal within some margin of error? Or are they really different? And if you do consider them equal, what value do you use when you proceed to the next step?

I've tinkered with setting a margin of error, for example, differences less than .001 are considered insignificant, and then averaging the numbers together to go to the next step. I haven't found any solution better than trial and error for selecting the margin of error. If the next table does not end in fewer columns than the previous, then the margin of error was not correctly chosen. Perhaps there is something more rigorous one could do here; I haven't pursued it.

Why This Works

While I haven't constructed a formal mathematical proof that this works, the principle is simple if you know a little calculus.

When we take the difference between pairs of values, we are, in effect, finding the derivative. You may note that the value you get is the derivative at some value in between the two values where you took the difference. That is, when you take the difference between the Y values corresponding to X values of, say, 2 and 3, you get the derivative at some X between 2 and 3. Not necessarily 2.5, but between 2 and 3.

When you continue taking differences until you get a constant, this is the equivalent of taking derivatives until you get to a constant function.

So for example, suppose the equation is y=2 x3 + 3 x - 7. (Of course the whole point is that we don't know that initially, but let's suppose that's what it is.) So as we take successive differences, we get:

Column Equation
0 y = 2 x3 + 3 x - 7
1 y' = 6 x2 + 3
2 y'' = 12 x
3 y''' = 12

Thinking backwards, then, we see that when we reach a constant, the column number must be the highest power in the original equation. Each time we take a derivative, we multiply by the exponent, so if we take derivatives all the way to a constant, we will have multiplied by all the integers from 1 to the original power, that is, by the power factorial. So when we get to a constant row, we know that the first term in the original equation must have been this constant times x to the column power divided by that power factorial, that is, if k is the constant and p is the column number, the first term must have been (k / p!) xp. In this example, the final column would be column 3 which would contain all 12's. We get (12 / 3!) x3 = (12 / 6) x3 = 2 x3. Which indeed is the first term.

If we substract this value from each of the original Y's, then we are effectively dropping the first term from the equation. If we run through the whole process again, this should find us the second term. Etc.

What Computers Are For

Of course, I don't expect you to do all this arithmetic yourself. That's what computers are for.

So I've written a little program to do the work for you.

Click here.

© 1999 by Jay Johansen


Comments

Fiaz Dec 3, 2010

Thanks for your excellent article at http://www.johansens.us/sane/technotes/formula.htm

I couldn't really understand why this works.. but I could follow through your argument and solve for any future such cases.

For your reference, I also happen to see a very concise and sweet method in here..

http://www.teachers.ash.org.au/mikemath/numseqfindiff/note2.pdf

which works nicely and to the point.

The method is certainly similar to users, and again I couldn't really understand the theory behind why it works.

Thanks & Regards
Fiaz

Walter Jan 27, 2011

Take a look at ... http://en.wikipedia.org/wiki/Difference_engine#Method_of_differences

A nobody called Isaac Newton has invented this method (^_^)

Jay Johansen Feb 18, 2011

It would be easy enough to increase the number of input fields on the screen. The logic would be the same. But 15 seems like a very large number.

This program finds the simplest polynomial formula that will generate the set of numbers that you give. That is, formulas in the form a + b x + c x2 + dx3 + e x4 ... (Where x2 means "x squared", x3 means "x cubed", etc. No superscripts in text email.) The highest exponent term it can generate is one less than the number of values you entered. That is, if you enter 10 values, it could come up with a formula going up to x to the 9th power. With 15 values, it can go up to x to the 14th power. If the set of numbers you give really requires a polynomial going up to the 14th power, well, I guess it depends what you're doing, but that's a very complicated formula. If, say, you're using numbers from a physics experiment and trying to find a formula to relate them, the odds are that the real formula doesn't go to the 14th power. This program doesn't allow for experimental error, it expects all numbers to be exact. Maybe some day I'll make a version that lets you enter some sort of margin for experimental error.

Anyway, my point is, try entering the first 15 numbers from your set and see what formula you get. If it really goes up to the 14th power, you probably have a set of numbers that cannot be described by a polynomial. They may be describable by some other sort of formula, a logarithm or trig function or some such. Or they may be just a bunch of random numbers.

Azick Feb 27, 2011

Sir, I am writing from Cameroon. I write to appreciate your effort of developing a very good program, How to Find formula for a set of Numbers. For I have been searching for such a program until this day that I found this one.But Sir, you limited the program for whole numbers and fractions formula to only 15 numbers.That means only the formula for 15 numbers and not more can be obtained after clicking on poly me Sir, I also write to inquire if you have any latest update for the program especially with regard to finding the formula for more than 18 numbers or so or between 18 to 25 numbers.Thanks

Terry Apr 22, 2011

I googled and found your site tonight for solving a sequence. I had a table with 4 sets of numbers, x and y, with x values starting with 1 and ending with 4. Your method helped me find the formula, which was a 3rd degree polynomial, not fun. Well, I think I have seen this method before. Have you been told any other sources for it? I have taken History of Mathematics. Maybe it was in that class. But your method saved the day - it was the only one that showed up in the search engine.

I was helping a poor College Algebra student who was given the table and asked whether it was proportional. We should have just plotted it to see that it wasn't linear (and/or didn't go through the origin). But I got stubborn and had to find the formula. It was a good exercise. Thank you for posting it.

Have a nice weekend.

Columbus State University
Columbus, Georgia

Nick Jul 28, 2011

Very interesting work. Brilliant. Thanks for sharing. Has anyone ever discussed your method ? Has it out there before you discovered it ?

Nick
Cincinnati, Ohio

Jay Johansen Jul 29, 2011

I really need to update my page. It turns out that this technique was invented by a little-known mathematician named Isaac Newton. I guess if you're going to come in second to someone, Isaac Newton isn't a bad person for it to be. Also, he didn't create a web page to implement it. :-)

Nick Aug 7, 2011

Well, I guess you are in good company. You should create an algorithm for data analysis. Just tweak the web page code to analyze data for signals (formulas). That awesome technique has to have some commercial/scientific application. I might write some C++ code for the technique.

Chris Sep 6, 2011

I found your site and have found it immensely helpful with a project i have been working on for a while.

It is essentially the same formula program you have made, except its designed to analyse multiple columns of data to get the equation, similar to BACON1. The version im working on is also designed to calculate it in terms of other mathematical functions (such as sin, mod, log, sqrt, etc). I was wondering if you would be willing to give me a hand with it or any resources i could use for aid.

Jay Johansen Sep 8, 2011

Expanding to other types of equations is an obvious next step. It also seems like a fairly difficult next step. Do you have a plan for how to do it? You could always do it by trial and error, i.e. have a list of functions and try each in turn until you get something that seems to work. Off the top of my head I don't know what you could do that would be better, but, well, there should be something. Trial and error would make it very difficult to discover a formula like y=sin x / x + ln x - x^2.

Curtis Sep 12, 2011

I recently view your website regarding your systematic computation of polynomial formulas. One issue I wanted to mention is that it incorrectly maps all functions to polynomials. For example the function n! which is NP and cannot be mapped to a polynomial, but in your website it is mapped to a polynomial in your program. There should be a quick check in place to see if the sequence grows at a rate faster than polynomial speed (i.e. n^k as k->some constant exponent value). Another example is 2^x...

The idea of subtracting numbers in a sequence to obtain the terms has been done many times, however your website does it quite nicely! However, your algorithm is inefficience and I wanted to help you out but giving you a suggestion to improve your solution. If you can "guess" the highest order term, simply by looking at the terms and seeing how each term relates to index i... you can guess the highest power this way. Then compute f(n)/n^highest power. If this value approaches a constant, you have correctly guessed the highest power. If it approaches 0, the power you have guessed was too high (you should guess again with a lower power), and if it approaches infinite the power you guessed was too low (guess again with a higher power). You can use this information to determine whether you need to revise the power you guessed or not. MOST IMPORTANTLY, when it approaches a constant, the value that it approaches is the constant which is multiplied by the highest power (i.e. f(n)/n^2 (assuming 2 is highest power) if computing this sequence seems to approach 5, then the first term in the function is 5n^2).

This is a much more efficient algorithm. Computing this way would allow you to compute hundreds of terms instead of just 15 on your site, as long as your server speed was fast enough, which in today's standards, is definitely not a problem.

Keep up the good work and enthusiasm!

Jay Johansen Sep 13, 2011

Hmm, I don't know how you can say that my algorithm "INCORRECTLY maps all functions to polynomials". How can you say that my mapping is incorrect? It derives a polynomial that generates the given set of numbers.

Consider the series 1, 2, 6, 24. Yes, this series could be generated by the formula y=x!

This program generates the polynomial y=11/6 x^3 - 19/2 x^2 + 50/3 x -8. The first four terms of this polynomial are, in fact, 1, 2, 6, 24.

11/6 (1)^3 - 19/2 (1)^2 + 50/3 -8 = 11/6 - 19/2 + 50/3 - 8 = (11 - 57 + 100 - 48) / 6 = 1
11/6 (2)^3 - 19/2 (2)^2 + 50/3 (2) - 8 = 88 / 6 - 76/2 + 100/3 - 8 = (88 - 228 + 200 - 48) / 6 = 2
Etc.

Both formulas generate the same set of numbers. Therefore, both are correct solutions to the problem. The fact that you may have come up with the sequence by using the factorial function doesn't make that the "correct answer". There's no way for the computer to know what you were thinking when you typed in the numbers.

Indeed, there are an infinite number of equations that could generate any given sequence. We could also generate this sequence with

y= (-x^4 + 32 x^3 + -149 x^2 + 250 x - 120) / 12

Or

y = 2^x (2-x)(x-3) (x-4) / 12 + 2^x (x-1)(x-3)(x-4) / 4 + 3 cos(x-3) (x-1)(x-2)(4-x) + 24 ln(x) (x-1)(x-2)(x-3) / ln(4)

As I stated on the web page, "What this technique finds is the simplest polynomial that fits the numbers." For any given finite list of numbers, there are an infinite number of possible rules or formulas to produce that list. For every new value added to the list, we could eliminate some of these possible formulas, but there will always be an infinite number.

I absolutely agree that an algorithm that could find trig functions and exponentials and logs and so on would be cool. But to derive this from a finite set of values would not be possible with a determinitive algorithm, i.e. there would not be a single correct answer. Intuitively you would want the "simplest" answer, i.e. "3x sin(x)" should win over a ten-term polynomial. But simplicity in that sense is difficult to even define mathematically, never mind implement with an algorithm.

The 15-value limit is not imposed by the power of the computer, but was simply an arbitrary choice. The intent when I created this web page was that it would be used with empirical data. If it can't find the right equation with 15 terms, the odds are that what you are looking for is not a polynomial, but a trig or log or some other formula.

Anyway, thanks for the comments.

Curtis Sep 14, 2011

That is a great explanation and definitely makes sense.

I was rude and tactless to say "incorrectly," and also the lack in clarity is on my part. My meaning in saying incorrectly, is that such a deterministic approach lends itself only to polynomial solutions. IT IS possible to fix this and it is not difficult. If you compute the solution using the method of dividing by the greatest power, than you will have the speed to compute two functions and compare them to find which one is "simpler" i.e. less terms. The first function is a polynomial guess (which you can compute efficiently using the method in the last email) and the second function is a NP guess of fairly simplistic forms such as a^x or n!. Here is how to write the function for NP guesses.

To find 2^x functions and factorial functions, the trick is to simply try dividing by f(n-1) for all functions which grow faster than polynomial time. That will do the trick. Dividing by f(n-1) maps n! to n and a^x to a allowing you to get a quick clear solution which you can output extremely efficiently. By comparing this solution with the polynomial solution, you can output whichever has least terms with a very quick comparison.

My reason for suggesting that what you have is incorrect is based on the following. If a user inputs 2 4 8 16 32 64 128 256 512.... up to the 15th digit, and you output a 16 term polynomial, I can't find any good argument to say that anyone realistic person would suggest that a 16 term polynomial solution is any good to them. Relative to a simple output of 2^x, it is of no value. I agree completely that you can find infinite functions which fit discrete values, NO ONE will dispute that point. But we all know a basic intuition of why we write programs... we write them to be useful, to aid us, and to solve problems. An extremely long polynomial solves the problem for a machine, but as humans, it is not useful and it does not aid us when a solution such as 2^x exists and can be obtained extremely quickly simply by checking the case when f(n)/f(n-1) and taking the limit as n->infinite. When someone enters 15 digits they are generally suggesting a pattern for a well described function, not simply an exuberant polynomial which somehow fits the digits. Its all about the point of the writing the program in the first place. If its point is just to map all discrete sets to polynomials than it is perfect. You just asked those with suggestions to comment, and I wanted to help you out by showing you a very quick adjustment that would make it cover a much greater range of functions, be more versatile, become more efficient and faster, and in the case of NP problems, give the correct answer.

Your website is awesome. I wouldn't take the time to write this if you didn't have my respect.

Vanderhoof Oct 31, 2011

I am writing you today in reference to an article you wrote, "How to Find a Formula for a Set of Numbers". I was intrigued by the idea of formulating a polynomial from a table of values and was very pleased to see that you had developed a method for this. I noticed, however, that you had not written a mathematical proof at the time (as you stated on the webpage) and I was wondering if you had written one since then or if you had been informed as to whether or not anyone else had written one. I am currently involved in the mathematics education department at the University of Central Florida and, since I plan on sharing this technique with my colleagues, I would love to have a proof to share as well (if available). Thank you for your time and I look forward to hearing from you.

Jay Johansen Nov 1, 2011

I'm told that my technique is essentially the same as one developed by Isaac Newton, which is called his "method of differences" or "method of divided differences". I just haven't had the time to investigate this but frankly I would have been surprised if someone hadn't figured out this basic technique before me: it's pretty obvious. (Bummer! Newton beat me by only 300 years!)

In any case, the concept behind it is this: When you take the difference between "adjacent" values, you are finding delta-y for delta-x = 1 for a series of x values. You are in effect finding the derivative. For example, say the function is actually x^2 + 1. (The whole idea is that we don't know this starting out, but let's assume this for purposes of discussion.) So our initial table would look like this:

x f(x)
1 2
2 5
3 10
4 17

Now we find the differences

x f(x) f'(x) f''(x)
1 2
3
2 5 2
5
3 10 2
7
4 17

The f'(x) of itself isn't much use, because we don't know what the x values are. We know that f'(x) is 3 for some value of x between 1 and 2, but we don't know what value. (In this case it's halfway between, 1.5, but in general it's not that simple.)

But when we get the f''(x) column, the f'' value is constant, so it doesn't matter what x is, it applies to all x.

So now we know that f''(x) = 2. From this we can deduce that f'(x)=2x+C1 and f(x)=x^2 + C1*x + C2.

In general if the constant term ends up as some value n, and the constant is in column p, then the high-order term is n/p! * x^p.

If we subtract x^2 from each f(x) value, we can then run through the same procedure to find C1. Then we do it all again to find C2.

I realize this is a long way from a formal mathematical proof, but that was the concept. I must admit that I'm just not quite sure how to get from where I am to a real proof. I've never really sat down to try to work it out. I'm a computer geek and not a mathematician, so I was approaching this from more of an engineering perspective: I didn't need a formal mathematical proof, just some logic that sounds plausible and that works when I try it with a variety of data. Sure, this kind of thinking often gets non-mathematicians into trouble: without a formal proof, you can't be sure that it works 100% of the time. There may be special cases. Or for that matter the cases you tried may turn out to be the small number of special cases where it works.

Hmm, just thinking about it now, it occurs to me that the casual thinking I've done about it so far has been trying to go from the differences to the polynomial. But it occurs to me that a more productive approach is probably to go from the polynomial to the differences. That is, if the high order term is ax^n, then we can readily demonstrate that the n-th derivative of f is a*n! . So all that remains to prove is that the n-th column of differences are equal to the constant term of the n-th derivative. If I just worked on this a little I might come up with an actual proof.

Chris Nov 13, 2011

I wasn't quite sure. I was thinking of having a set of functions to test in sequence (of all available data) in each possible format. There would be constants that can be adjusted later, but this stage is designed to try and discover the function for the change, then after, the constants can be adjusted to get it to line up.

It sort of is trial and error, but if a list of suitable tester functions for each element could be assembled, id imagine it could get quite close, maybe find multiple equations for the same outcomes. I recon it would be very similar to the keplar program.

Ashley Feb 10, 2012

I like your website, it's informative. I also tried to use the sequence program and got a huge string of numbers. Maybe you could help me decipher them?

Okay so I typed in a string of 'random' numbers and this is what I got ( was just looking for the next in the sequence):

Final Answer
y = -6169/3228825600 x14 +2045782776184849337/1438777253582157824 x13 +47339270785488829/285103675391207424 x12 -66956796112409307/7879453435756460032 x11 -1345146413511675721/3716083674335348736 x10 -1265383237270535869/1768146741225617408 x9 -103110904635775/1246640676310390784 x8 -12351101043369721/920856574319114240 x7 -28875337419760317/7407460916899644928 x6 +11189711754560527/563704541018865536 x5 +31419522614634823/572908877914485888 x4 -128727978105837323/829860257916322176 x3 +126147133537779719/130875669076421728 x2 +2482680522399570425/516821091708297996 x +433999830631005724/155278720400261061

Jay Johansen Feb 11, 2012

If you type in random numbers, you'll get essentially random output. Assuming the program is working this function should generate the sequence of numbers you gave. Verifying it would be a pain.

You might try it with shorter, more carefully chosen set of numbers. Like put in 1, 4, 9, 16 and see if it says this is x^2, etc.

Ashley Feb 14, 2012

Well, I took the sequence of numbers from a random number generator. Seeing how its a computer function i thought it couldn't actually be random. I guessed using your program could maybe show the pattern ? Apparently not. Is it possible to figure out how numbers are selected through a random number generator using a produced string of numbers? Just curious.

Jay Johansen Feb 14, 2012

My "function finder" wouldn't uncover the algorithm behind any computer random number generator that I know. My function finds polynomials, and computer random number functions tend to use recursive functions and twiddle bits, which would obscure any polynomial.

Yes, it is true that computer random numbers are not random in the same sense that a die roll is random. They are often called "pseudo-random".

Are you wondering how computer random number functions work in general, or how one works in particular?

If the former: The random number function used by Java is pretty typical.

Each random number is generated from the previous random number. It takes the previous number, multiplies by 25214903917 and adds 11. Then it calls another function that I don't have the source code for but I think it's just preventing getting the same number twice in a row. Each request for a random number specifies how many binary digits it wants, so it peels off the first however-many digits and that's what it returns. Then this number (the full number, not the peeled-off digits) is saved to use the next time around.

To get the first number, when you have no "previous", the calling program can set a value. Programmers sometimes do this when testing so they can get the same series of numbers for each test. Normally, though, it uses the number of nanoseconds from the current time as the starting value. I just noticed that Java carefully adds 1 to this each time you create a new random-number sequence, so if you create two random number sequences within one nanosecond they'll get different starting values.

rovingrover Mar 23, 2012

I am contacting you regarding your method of calculating differences between polynomial terms as I too have done work on this area, though with a different approach and not as in depth. I, also was not able to find any demonstration of this work in other places, though would be highly interested in finding out if you find some professional work on this topic. I am currently a high school equivalent student to give you some perspective. I think a formal would proof would be showing that the nth derivative of x^n simplifies to x!, try it for yourself.

Interestingly this may, with a little adapation, work for non integer n by means of an infinite series, [note to self gamma function?]. Your blog has just given me a little eureka moment!

Thanks for the entertaining article, and please contact me if you find a more in depth explanation of this, though I fear it may be too simplistic to be considered in great depth.

Atanas Oct 11, 2012

I remember learning this formula from a math club instructor back in high school. Then I forgot it and I needed it to solve a problem in one of my classes. I gave up on finding the formula and then today I stumbled across your website where you said you derived this yourself and you were interested in knowing if anyone else had either so I guess I'm just emailing you to say thanks for putting that up and that I have seen it before and it's probably my favorite mathematical trick so....thanks again!!

Ed Feb 1, 2013

Thanks for posting this.

I am considering the use of your Formula Generator for an certain application where the numbers inputted represent specific incremental bioenergetic microfrequencies-representative of disorder in a chaotic system.

My query:

I am trying to understand how the formula derived might be understood to represent a harmonic relationship between the individual numbers of increasing values. Should such a relationship be conceivable as such.

I am also interested in knowing which process,or variable, would bring the established formula to zero (theoretically neutralizing the entropy represented by the values)

I am obviously attempting to find a numeric value which stabilizes the disorder.

Your thoughts are very much appreciated.

Many thanks for your time,

Jay Johansen Feb 2, 2013

Short answer: This program will find the simplest POLYNOMIAL which generates the given set of data. I don't want to overstate what it does. If the "true" formula is a harmonic or trigonometric or some such, this program won't generate n^-1 or sin n terms -- it will still generate a polynomial, the polynomial that gives the best fit to your data.

People have occasionally suggested that I extend the program to handle a wider variety of functions. I agree that would be cool, but barring a brainstorm on how to do it easily, that would be a much more complicated project, one that I'm not likely to do in my spare time.

I'm happy to chat with you about how to find solutions for the more general case, but that's about all I can say.

Best of luck! :-)

Tony Jun 5, 2013

My greatest of compliments on your program. I have been using your website to introduce students to linear regression and Taylor/Maclaurin as a tutor for years now. I was wondering if you might be selling "polyme" the program as a stand-alone program that wouldn't require Internet access. If you aren't, again, my greatest of compliments and thanks for the instructive resource that I've been using all of these years.

Stephen Jul 28, 2013

I absolutely LOVE your page on a formula for any set of numbers. i've long wondered about that sort of thing and eventually i found your page after attempting to research such a thing on the internet. I know it's been several years since you made the website, look at the page I think it's been 15, but you updated it 5 years ago if I'm not mistaken. However, I'm very interested in computer science now, and I'm going to be a freshman at a university in North Carolina in the fall, so I'm wondering if there's any chance you would mind giving me access to your page, or spreadsheet, whatever it is that you used to create that program which does the math for you. I understand this is a big request, which is why I'm asking you. I've begun to try to emulate the process you describe, using my limited (though rapidly improving) knowledge of excel, but I can't even get the if-then statements to work :(

anyway, I'm hoping to hear from you soon, and have a great day and thank you for your marvelous work!

ali shahzad Oct 24, 2013

Dear Mr. Jay,

Hope you will be fine and enjoying some great work.

I would like to convey my special thanks to you for such a nice program for generating equation for numbers.

For my M.Sc Engineering in mechanical design thesis work, I have established a equation from your written online program.

This program helped me a lot.

Well done.

Jonah Dec 22, 2013

I came across your "How to Find a Formula for a Set of Numbers" webpage and was intrigued by it. I've done the same thing many times myself; in fact, in 6th grade, this is essentially what our teacher taught us to do. I'm sure you've been told this before, but do you realize that you essentially recreated Taylor Series??

It's quite cool.

Thanks for the fun!

satdeep Jan 30, 2014

I found your "How to Find a Formula for a Set of Numbers" webpage very useful. But I have a small confusion. While generating the formula, especially for your data, 2,8,9,11,20,... you came up with a step like this,
6 / 3! x n3
= 6 / 6 x n3
= n3
I don't know what 'x' and 'n' indicates. Because, in this webpage you finally ended up with the formula,
n3 - 17/2 n2 + 49/2 n - 15
But, if I use your computer program 'Poly Me', the formula comes like this,
y = +1 x3 -17/2 x2 +49/2 x -15

Please clear my confusion.

Jay Johansen Feb 2, 2014

Okay, I was inconsistent. "x" and "n" are the input variables. The letter doesn't really matter. Whether you write y=3x+5 or q=3n+5, it's the same formula.

To take that example, if I plug in x=1 I should get out y=8. If I plug in x=2 I get out y=11. Etc.

satdeep Feb 2, 2014

Thanks for clearing my doubt. I appreciate.

lalit bhardwaj Feb 20, 2014

thanx for this formula.......... pls.send all formula my mail ID . THANKU

just click this Mar 7, 2014

This site inspires me everyday, you should update it more often

Totardo Tobing Mar 19, 2014

Wow thanks... Your program works.... I wish that you write your explanation with a simpler example Sir. Just for a guy like me can follow/understand. For instance: 3,5,9,15

But anyway really thankful for this great work, thank you

Jay Johansen Mar 20, 2014

3
5 -> 2
9 -> 4 -> 2
15 -> 6 -> 2

So first term is 2/2! x ^2 = x^2. Subtract that from each term ...

3-1=2
5-4=1
9-9=0
15-16=-1

Then run thru again ...

2
1->-1
0->-1
-1->-1

so second term is -1/1! x ^ 1 = -x. Subtract that from each term -- remember minus a minus is a plus.

2+1=3
1+2=3
0+3=3
-1+4=3

So last term is 3/0! x^0 = 3.

Putting that together gives x^2 - x + 3.

Check it:

f(x)=x^2 - x +3
f(1)=1-1+3=3
f(2)=4-2+3=5
f(3)=9-3+3=9
f(4)=16-4+3=15

Hooray!

Totardo Tobing Mar 22, 2014

Lots of funn,, thank you Sirrrr, God bless

Johnd611 May 19, 2014

This website is mostly a walkby for all the info you wished about this and didnt know who to ask. Glimpse right here, and also youll undoubtedly uncover it. bcdfdeedeged

Andrew May 21, 2014

Wow! Thanks for this in-depth explanation! Really great method.

I've tried implementing this method in Python for my own interest, however I was unable to get it working correctly on the last few steps.

Is there any chance that you would be able to provide the source code to your program?

Pharmf425 May 22, 2014

Very nice site!

michael kors black ion May 25, 2014

Just to let you know, this post looks a little bit odd from my android phone. Who knows maybe it really is just my cell phone. Great post by the way.

Morteza Oct 17, 2014

Hi. I'd like to translate this article into Persian.
Do you allow me to do that?

All your rights will be reserved..
Answer me via Email.

Ehab saber Dec 17, 2014

what is the formula of :
19, 17, 12, 11, 19, 18, 43
in seq 1 : 7

William Bouris Apr 8, 2015

I used Poly Me, the program, and it worked wonderfully. You have a great website. Thanks, again! Bill

Caitlin Apr 28, 2015

I wanted to mention that this would not be a good method to find the formula for a sequence of real world data. Although this method would be able to fit a n^th order polynomial to the curve, and it would go exactly through all the points, it would not be much use at actually predicting other values. But for cases when you are just trying to find the next value in a sequence, this is very interesting and fine.

Jay Johansen May 1, 2015

Caitlin: Absolutely true, especially if we're talking about using my program. If you have data collected from, say, a scientific experiment, there is going to be some measurement error in there, and my program expects all the numbers to be exact. It's useful for working with MATH problems, not SCIENCE problems. This method could work for real-world data if you accepted some fudging of the numbers, like if you see a column of differences comes out to 1.9, 2.1, 1.88, and 2.02, you might way, "hmm, maybe the real number is 2" and see how it works out. I've been thinking for a long time of adding a feature to my program to allow for some error, but I've never gotten around to it.

Also, note this method will find a POLYNOMIAL, period. It wont find a trig function or a log or many other possibilities. It would take entirely different methods to find such functions.

nick crorkz May 30, 2015

rVhKk4 Generally I do not learn post on blogs, however I would like to say that this write-up very pressured me to take a look at and do it! Your writing style has been amazed me. Thanks, very nice article.

JeremyPt Jul 9, 2015

Hello.
my name is jeremy from tanzania
nice to join this forum

q point Jul 12, 2015

I like how will it is explained. Wondering if the same concept can work a set of 3 numbers to find the answer in 3 set of numbers....
example
302-185-23
Result
100-93-124

Or a way to find the formula with the answer.
Or pluging in all questions with answers in pairs to better find formula.....
Example
X-Y-Z = A-B-C \
X-Y-Z = A-B-C > (formula)
X-Y-Z = A-B-C /

Jay Johansen Jul 22, 2015

q point: I'm not sure what you mean. What is the relationship between the two sets of three numbers? Can you explain more fully?

q point Jul 23, 2015

Hey jay.....the three sets of numbers are given as a question and i input it in a special program. Then the program will just give me an output in a set of three numbers.

Example
Input 551-69-11
Answer 534-92-105

Input 6649-13-23
Answer 2149-97-94

Input 4343-110-131
Answer 3241-95-112

Input 25651-185-2095
Answer 23228-97-124

Input 19519-50-617
Answer 18327-93-102

Input 9073-112-131
Answer 92-93-113

Input 458-38-5
Answer 341-91-99

Input 481-236-29
Answer 303-92-132

Input 302-185-23
Answer 100-93-124

Input 1769-45-59
Answer 1633-94-101

Input 791-79-11
Answer 282-91-107

Input 5767-186-211
Answer 1830-90-125

I notice that the middle number from the ANSWER is less than 99 and the third number is in the 100's.....

The three set of numbers are used to unlock cell phones. I believe that the formula uses stream cipher techniques.

My question
Is there a way to use the answer to find the formula in respect to the input question?

My example

| Input. Output | \
| Input. Output | \
| Input. Output | \
| Input. Output | / = formula
| Input. Output | /
| Input. Output | /

Use a couple of the input and outputs to find a middle point to find the formula...or plug in the technique you used above.

Samba Sep 5, 2015

my student AMRUTHA chkeced the same case with another polinomial"if (x-2)&(x-5) are two factors of a polinomial 'X cubed-aXsqured-bX+20',find the value of 'a'&'b'.in this polinomial you won't get any value of 'a'&'b'. can you find using one equation? YOUR answer will be NO.THEN think ......"

mani Oct 27, 2015

243,861,315,-what is the next numbers

okfrb Dec 5, 2015

Hondrocream .

BrendaHali Dec 12, 2015

∑분당오피【Opyo01。CoM】“정재형”《정보오피요》인천건마こ선릉건마フ상동건마
∑분당오피【Opyo01。CoM】“정재형”《정보오피요》인천건마こ선릉건마フ상동건마
∑분당오피【Opyo01。CoM】“정재형”《정보오피요》인천건마こ선릉건마フ상동건마
∑분당오피【Opyo01。CoM】“정재형”《정보오피요》인천건마こ선릉건마フ상동건마
∑분당오피【Opyo01。CoM】“정재형”《정보오피요》인천건마こ선릉건마フ상동건마
∑분당오피【Opyo01。CoM】“정재형”《정보오피요》인천건마こ선릉건마フ상동건마
∑분당오피【Opyo01。CoM】“정재형”《정보오피요》인천건마こ선릉건마フ상동건마

AndriaJef Dec 14, 2015

∑분당오피【Opyo01。CoM】“서지원”《정보오피요》홍대오피こ용인오피フ대전오피
∑분당오피【Opyo01。CoM】“서지원”《정보오피요》홍대오피こ용인오피フ대전오피
∑분당오피【Opyo01。CoM】“서지원”《정보오피요》홍대오피こ용인오피フ대전오피
∑분당오피【Opyo01。CoM】“서지원”《정보오피요》홍대오피こ용인오피フ대전오피
∑분당오피【Opyo01。CoM】“서지원”《정보오피요》홍대오피こ용인오피フ대전오피
∑분당오피【Opyo01。CoM】“서지원”《정보오피요》홍대오피こ용인오피フ대전오피
∑분당오피【Opyo01。CoM】“서지원”《정보오피요》홍대오피こ용인오피フ대전오피

Nick Dec 22, 2015

I am trying to use your method, or rather your calculator, to predict next year's baseball stats. Do you think it will yield useful results, or that I should look for another method? Every relevant formula in Google Sheets wants two axes, but all I have are one-dimensional lists.

Jay Johansen Dec 25, 2015

Nick: Short answer: I sincerely doubt it will work.

1. It's extremely unlikely that baseball stats follow a rigid formula. There are hundreds of factors involved, many of them very difficult to quantify objectively. I would be extremely surprised if you could come up with a formula where you plug in the year and it pops out, say, the number of home runs that were or will be hit that year. At the very least you'd have to factor in some measure of the skill levels of the players. Probably also everything from humidity on the day of the game to data about the composition of the particular ball pitched.

2. On the practical side, my program only handles functions in one variable, and makes no allowance for measurement errors in the data. It's really intended more for uses in pure math than real-world measurements. I keep saying that some day I'll add a "measurement tolerance" to it, but I haven't gotten to it.

If you actually come up with a formula that accurately predicts baseball stats in advance, I presume you can become very rich by betting on game results. Which is why people have been trying to do it for decades, and to the best of my knowledge none has succeeded.

Paul Kranz Mar 10, 2016

Jay:

My series has a formula of x(X + 1)/2. It shows how many days worth of interest is paid on a line of credit. The formula works as long as the draws are averaged and I take a new draw everyday. How can I determine the number of interest-days when I skip a few days between draws (e.g. over the weekend days when I cannot access my account to take a draw)?

Paul sends...

grad student Mar 26, 2016

It is much quicker to just use Lagrange interpolation

MarcysiaaW Apr 17, 2016

Od jutra zaczynam odchudzanie, kto sie odchudza ze mna? Znalazlam w necie dobry sposob na chudniecie, wygoglujcie sobie - xxally radzi spalanie tluszczu

vetaia May 5, 2016

can u find a formula for this sequence
1,2,2,3,3,3,4,4,4,4

Williamwew May 20, 2016

Muchos Gracias for your forum post.Really thank you! Want more. Wehbe

Solomon Jun 1, 2016

Hello Jay,

Thank you for sharing this great tool. Although i have a question for you. If i have three data and trying to find a connection between these data. e.g
Temperature of a room is determined by the time the heater is turned on to the area of the room.

A = Temperature
B = Time
C = Area of the room.

I have all three values for about 50 test conditions and they all have different values. based on this can i get a code to generate a formula that will give an accurate A value when i use any value for B or C. Thank you.

Solomon Jun 1, 2016

Hello Jay,

Thank you for sharing this great tool. Although i have a question for you. If i have three data and trying to find a connection between these data. e.g
Temperature of a room is determined by the time the heater is turned on to the area of the room.

A = Temperature
B = Time
C = Area of the room.

I have all three values for about 50 test conditions and they all have different values. based on this can i get a code to generate a formula that will give an accurate A value when i use any value for B or C. Thank you.

Jay Johansen Jun 4, 2016

Solomon: My technique as I have worked it out only handles functions of one variable. I haven't pursued multiple variables. In general, I think the way you solve such a problem is by holding one variable constant, varying the other, and seeing what kind of formula you can derive. Then hold the second one constant and vary the first.

Jay Johansen Jun 4, 2016

grad student: "It is much quicker to just use Lagrange interpolation" So ... use Lagrange interpolation. I'm not familiar with the technique. Care to post a link to a page explaining how to use it?

Jay Johansen Jun 4, 2016

vetaia: Sure: y = -1/13440 x^9 +67/20160 x^8 -1247/20160 x^7 +893/1440 x^6 -20773/5760 x^5 +34909/2880 x^4 -217519/10080 x^3 +7983/560 x^2 +761/105 x -8

I'm sure you're thinking of a rule more like, "Each number occurs as many times as that number, one one, two two's, three three's, etc."

But the whole point of my article here is that you can always find a polynomial that will generate any finite series. My algorithm finds the polynomial. There are an infinite number of ways to generate any given series. The polynomial MAY be the simplest or most logical, or it may not.

Arorneonexofs Jun 29, 2016

- SMART Media (),
WhatsApp , , .
, ,
.

:
. 21, 11
: +7 777 785 62 74, +7 707 60 77 500
Skype: alexsei-92
, !

a Nov 1, 2016

very useful. thanku

Jeff Smith Nov 4, 2016

This is fantastic, but what about a series of numerical values? For example, let's say I have to make a bridge out of plywood. The only samples I have are 5 feet, 6 feet, 7 feet, and 8 feet long. Now, assume that the bridge must be symmetrical, and that both using the pieces most similar in size and using the fewest amount of pieces is the best.

I want to find the best way to make a bridge 14 pieces long, 15 pieces long, 16.....50 pieces long. Each numerical value representing each bridge will look like (N1 N2 ... Nk), where k is the fewest amount of pieces.

14 pieces = 2 7' = (77)
15 pieces = 3 5' = (555)
16 pieces = 2 8' = (88)
17 pieces = 1 5', 2 6' = (656)
18 pieces = 3 6' = (666)
19 pieces = 2 6', 1 7' = (676)
20 pieces = 1 6', 2 7' = (767)
21 pieces = 3 7' = (777)
....

Sure, I can manually do this for up to 50 pieces, but what if I want to make a bridge 1400 pieces wide? It'd be nice to have a formula that could do this. Any ideas?

Edward Negondeni Nov 19, 2016

Hello Jay Johansen

Your program is really fantastic. It does help indeed. Can there be a way of finding a formula through this program if the given x values skip and the given y values given also skipped? Like

x:-3; 0; 3; 6; 9; 12
y: 4; 2; 0; -2; -4; -6

I struggled to get through this ordered pairs in order to find the formula. Please help!

Johnk169 Nov 23, 2016

I like what you guys are usually up too. This kind of clever work and exposure! Keep up the amazing works guys I've added you guys to my blogroll. cekgkcgebdbd

Me Nov 27, 2016

Look at the age of this thing!
Math doesn`t get old :)

Thanks for this wonderful article!

Jay Johansen Nov 30, 2016

Edward Negondeni: Sometimes, with some extra work.

Let's create a new variable, call it n. Imagine a function x=f(n), and another function y=f(n). That is, f is (1,-3), (2,0), (3,3), (4,6), (5,9), (6,12). g is (1,4), (2,2), (3,0), (4,-2), (5,-4), and (6,-6).

Run f through this method and you get x=3n-6. Run g and you get y=-2n+6.

Now you "just" need to combine those two equations to get a function that maps x to y.

In this case, we can solve f for n. n=1/3 x + 2. Then plug that into g. y=-2 (1/3 x + 2) + 6, which simplifies to y= -2/3 x + 2.

If f cannot be solved for n, it gets more complicated.

Jay Johansen Nov 30, 2016

Jeff Smith: The method described in this article isn't going to help you, as it's just not that kind of problem. It's not a polynomial. This is more like linear algebra.

I think in your examples you meant not "14 pieces", "15 pieces", etc but "14 feet", "15 feet", etc. Right? It doesn't seem to make sense otherwise. You can get 14 feet with 2 7 foot pieces, etc.

With these particular numbers, many lengths would be impossible. 9 feet, for example.

If the bridge is symmetrical, then you can have at most one length that occurs an odd number of times: one that goes in the middle.

I don't think you can solve this with a formula or equation, but you could come up with an algorithm. My thought is: take the total length. If it's odd, there must be an odd number of pieces, and the middle one must be a 5 or a 7. If it's even, we could have an odd number of pieces with the middle one having an even length, or an even number of pieces. So take all the possible values for the middle piece -- including zero. For each, divide the remaining length by 2. Find the largest multiple of 8 less than this. See if you can make up what's left with shorter pieces. If not, take the next lower multiple of 8. Etc. With a little work you could probably make it more systematic.

Dominic Jan 3, 2017

I think what you published was very reasonable. However, think on this, suppose you were
to create a killer headline? I ain't saying your information is not good., but suppose
you added a post title that makes people desire more?

I mean How To Find a Formula For a Set of Numbers - Island of Sanity is a little vanilla.
You could peek at Yahoo's front page and watch how they create article titles to grab people
to open the links. You might try adding a video or a related picture or two
to grab readers interested about everything've got to say.
In my opinion, it might bring your posts a little bit more
interesting. math solver (Jorja) Mathematics is vital in many
areas, including natural research, engineering, medicine, money and the communal sciences.
Applied mathematics has led to new mathematical disciplines
entirely, such as information and game theory.

Mathematicians also take part in pure mathematics, or
mathematics because of its own sake, with no any application at heart.
There is absolutely no clear range separating natural and applied mathematics,
and practical applications for what started out as pure
mathematics are learned often.

interested hobbyist Feb 15, 2017

I'd like to first pile on my praise to your heap of praises for your clear explanation on your site. :)

I liked it so much that i tried doing an implementation in python, which worked.. but it seems to be pretty slow the more numbers i added (which is within expectations)

however it seems your implementation on your calculator differs slightly in that your subsequent column zeros get shorter and shorter. I was wondering if anything changed in between your article and your calculator program (the one that works with fractions). perhaps that implementation is a lot faster? i couldn't get it to work at a reasonable pace once i fed upwards of 10-15 numbers.

If you like, i can send you my python implementation (which is neither concise nor very pythonic) for a look.

hope to hear from you!

Jay Johansen Feb 21, 2017

You can drop one row with each iteration. If you try it manually, or have the program dump out the results, you'll see that after the first "frame", the numbers in the last column are always the same.

Regardless, I don't see why it should be slow. My PHP program runs in a fraction of a second. I frankly don't know if PHP is inherently faster than Python, but I would be surprised if it is a huge difference. If your program is taking a long time to run, I suspect you have a flaw. You are doing the same work over and over, or maybe creating and destroying too many objects, or something of that sort.

I could take a look at your Python program but I've only dabbled in Python, I don't claim to be any sort of expert.

Jacob Mar 15, 2017

I do believe all the concepts you've offered to your post.
They're really convincing and will definitely work. Still, the posts are too short for beginners.
Could you please extend them a bit from next time? Thanks for the post.

cheap NFL jerseys

Elden Mar 15, 2017

Definitely believe that which you stated. Your favourite justification appeared to be
at the net the easiest factor to be mindful of.
I say to you, I definitely get annoyed whilst other people think about concerns that they just
don't know about. You managed to hit the nail upon the top as smartly as outlined out
the whole thing without having side effect , other folks can take a signal.
Will likely be back to get more. Thanks
cheap MLB jerseys

Leah Mar 17, 2017

Great beat ! I wish to apprentice whilst you amend your web site, how could i subscribe for
a blog site? The account helped me a appropriate deal.
I had been tiny bit familiar of this your broadcast
provided brilliant transparent concept
wholesale NFL jerseys

Noble Mar 17, 2017

Superb, what a weblog it is! This blog provides useful facts to us, keep it up.

cheap MLB jerseys

Leopoldo Mar 18, 2017

I know this website presents quality dependent content and additional data, is there any other website which provides such stuff in quality?

Major

Danilo Mar 18, 2017

Hello There. I found your blog using msn. This is a really well written article.
I will be sure to bookmark it and come back to read more
of your useful information. Thanks for the post. I'll certainly comeback.cheap baseball
jerseys China

Lyda Mar 19, 2017

Wonderful website. Plenty of helpful information here.
I am sending it to several friends ans also sharing in delicious.
And of course, thanks for your effort!
Eva

Coral Mar 19, 2017

Everything is very open with a clear explanation of the issues.
It was really informative. Your site is very useful. Thank you for sharing!

fake jerseys

Jude Mar 19, 2017

I was very pleased to discover this web site. I want
to to thank you for ones time just for this fantastic read!!

I definitely really liked every part of it and I have you book marked to check
out new information on your website.
wholesale jerseys

Taren Mar 20, 2017

Have you ever thought about including a little bit more than just your articles?
I mean, what you say is valuable and all. But think about if you added some great visuals or
videos to give your posts more, "pop"! Your content is excellent but with images and video clips, this site could undeniably be one of the very best in its field.
Amazing blog!
cheap NFL jerseys

Paul Kranz Mar 20, 2017

I gave you

n =... desired result...
1 1
2 2
3 1
4 2
5 1
6 2
7 1
8 2
9 1
10 2... etc.

You gave me "y = +2/2835 x9 -11/315 x8 +20/27 x7 -44/5 x6 +8666/135 x5 -4444/15 x4 +486536/567 x3 -468688/315 x2 +62144/45 x -510," but the answer is
"2 - (n mod 2)." What gives?

Paul sends...

Anh Mar 20, 2017

You ought to take part in a contest for one of the best sites on the net.
I'm going to recommend this web site!
cheap NFL jerseys

Velda Mar 20, 2017

My programmer is trying to convince me to move to .net from
PHP. I have always disliked the idea because of the expenses.
But he's tryiong none the less. I've been using Movable-type on numerous websites for about a year and am worried about switching to another platform.

I have heard very good things about blogengine.net.
Is there a way I can transfer all my wordpress posts into it?
Any kind of help would be greatly appreciated!
cheap MLB jerseys

Brigette Mar 21, 2017

Great blog you have here but I was curious about if you knew of any community forums that cover the same topics discussed in this article?
I'd really love to be a part of group where I can get feed-back from other knowledgeable individuals that share the same interest.

If you have any recommendations, please let me know. Bless you!

wholesale jerseys

Roy Mar 22, 2017

Ebay same style cheap basketball jerseys from china to offer.

Online free shipping - Nike Seahawks 4 Steven Hauschka Green Mens Stitched NFL Elite Rush
Jersey

Rolando Mar 23, 2017

I am nike usa soccer supplier online, take coupon code here:
cheap swingman jerseys

Antonia Mar 24, 2017

Who do you want to gift for wholesale Tramaine Brock jerseys?
Get value into the page: really cheap soccer jerseys

Carmela Mar 24, 2017

It's the best time to make some plans for the future and it is time to be happy.
I've read this post and if I could I want to suggest you some interesting things or advice.
Maybe you can write next articles referring to this article.

I wish to read more things about it!
wholesale nhl jerseys

Brigette Mar 25, 2017

I have read so many articles or reviews about the blogger lovers but this article
is in fact a nice post, keep it up.
Kathryn

Randall Mar 25, 2017

What's up Dear, are you in fact visiting this site regularly, if so then you will definitely get nice know-how.

cheap nhl jerseys

Hector Mar 25, 2017

I'm amazed, I have to admit. Rarely do I come across a
blog that's both equally educative and entertaining, and without a doubt, you have hit
the nail on the head. The issue is something which too few folks are speaking intelligently about.
I am very happy I found this during my hunt for something
regarding this.
cheap NBA jerseys

Stacy Mar 25, 2017

Who do you want to gift for top jerseys from china? Get value into the page: cheap soccer jerseys from usa

Gustavo Mar 26, 2017

Please let me know if you're looking for a article writer for your site.
You have some really great posts and I feel I would be a good asset.
If you ever want to take some of the load off, I'd
absolutely love to write some material for
your blog in exchange for a link back to mine. Please shoot me an e-mail if
interested. Thank you!wholesale ncaa jerseys free shipping

Rosalina Mar 26, 2017

How to get nike football jerseys cheap? Tips you may used.
cheap jj watt jersey

Abbie Mar 27, 2017

Everything is very open with a clear clarification of the issues.
It was definitely informative. Your site is useful.
Thank you for sharing!
wholesale NBA jerseys

Adele Mar 27, 2017

It is perfect time to make a few plans for the longer term
and it is time to be happy. I have read this submit and if I may just I wish to suggest
you some interesting things or advice. Maybe you can write next articles referring
to this article. I wish to learn even more things about it!

wholesale jerseys

Emmett Mar 28, 2017

Who do you want to gift for official hockey jerseys? Get value
into the page: Home

Maxwell Mar 28, 2017

I enjoy reading through a post that can make
men and women think. Also, thanks for permitting me to comment!

cheap MLB jerseys

Damaris Mar 29, 2017

Great info. Lucky me I discovered your website by chance (stumbleupon).

I have bookmarked it for later!
fake jerseys

Jose Mar 29, 2017

Hi there, I discovered your site via Google whilst looking for a
similar matter, your site got here up, it appears to be
like good. I've bookmarked it in my google bookmarks.

Hi there, just was aware of your blog through Google, and found that it is
truly informative. I am going to watch out for brussels.
I'll appreciate if you proceed this in future. Many other folks will be benefited from your writing.
Cheers!
wholesale nhl jerseys

Rubin Mar 29, 2017

I do not know whether it's just me or if perhaps everyone
else encountering problems with your blog. It appears like some of the written text on your posts are running off the screen. Can someone else please
provide feedback and let me know if this is happening to them as well?
This may be a problem with my internet browser because I've
had this happen before. Appreciate it
cheap nhl jerseys

Benny Mar 29, 2017

cheap jerseys amazon Amazon Shopper online retail,with link:
cheap jerseys bike

Shayne Mar 29, 2017

I've been surfing online greater than 3 hours these days,
yet I by no means found any attention-grabbing article
like yours. It is pretty value sufficient for me. In my opinion, if all web owners and bloggers made
good content as you did, the net will likely be much more helpful than ever before.

wholesale mlb jerseys

Natalia Mar 30, 2017

When is sales for cheap jerseys aliexpress? Find site: cheap Brian Urlacher jerseys

Cassie Mar 30, 2017

What is size of cheap Brandon Brooks jerseys may have?
Know more about here - cheap nfl nike jerseys free shipping

Thalia Mar 30, 2017

It is truly a nice and useful piece of info. I am glad that you shared
this useful info with us. Please keep us informed like this.
Thanks for sharing.
cheap jerseys

Lowell Mar 31, 2017

If you wish for to take a good deal from this article then you have to apply these techniques
to your won website.wholesale mlb jerseys

Wyatt Mar 31, 2017

Hey there would you mind sharing which blog platform you're using?
I'm planning to start my own blog in the near future but I'm having a
hard time selecting between BlogEngine/Wordpress/B2evolution and Drupal.
The reason I ask is because your design seems different then most blogs and I'm looking for something completely unique.
P.S Apologies for getting off-topic but I had to ask!
wholesale jerseys

Santiago Mar 31, 2017

Where to buy jerseys wholesale? Come here. chelsea jersey cheap

Oliver Mar 31, 2017

Great place to order jerseys china by Paypal. cheap tom brady jersey

Elane Mar 31, 2017

Yes! Finally something about cheap jerseys.
wholesale jerseys

Walter Mar 31, 2017

Great place to order wholesale nfl jerseys usa by Paypal.
cheap minnesota wild jerseys

Jayson Mar 31, 2017

nfl jerseys china paypal,get black friday nfl shop coupon codes coupon code for free gift with 79%
off and save more.

Tyrell Mar 31, 2017

Its not my first time to visit this web page, i am browsing this website
dailly and take fastidious facts from here daily.
cheap jerseys

Margaret Mar 31, 2017

I am cheap paintball jersey supplier online, take coupon code
here: football jerseys cheap

Ilse Mar 31, 2017

This is the perfect blog for everyone who hopes to understand this topic.
You know a whole lot its almost hard to argue with you (not that I personally would want to_HaHa).
You certainly put a fresh spin on a subject that's been written about
for decades. Great stuff, just excellent!
wholesale NFL jerseys

Elyse Apr 1, 2017

real madrid jerseys cheap Amazon Shopper online retail,with link:
reebok hockey jerseys custom

Ouida Apr 1, 2017

Ebay same style wholesale Herman Edwards jerseys to offer.
Online free shipping - cheap jersey malaysia

Kelvin Apr 1, 2017

This is very interesting, You're a very skilled blogger. I have joined your feed and look forward to seeking
more of your excellent post. Also, I have shared your website in my social networks!cheap nba jerseys

Melisa Apr 1, 2017

obviously like your web-site however you need to test the spelling on quite a few of your posts.
Many of them are rife with spelling issues and I to find it very troublesome to inform the reality on the other hand I will surely come again again.cheap jerseys
online

Trisha Apr 1, 2017

nfl wholoesale jersey nike nfl jerseys differences

Sylvia Apr 1, 2017

Simply want to say your article is as astounding. The clearness in your post is just cool and i could assume you are an expert on this subject.
Well with your permission let me to grab your feed to keep updated
with forthcoming post. Thanks a million and
please carry on the rewarding work.
wholesale NBA jerseys

Hermelinda Apr 2, 2017

Thanks for the good writeup. It if truth be told was once a enjoyment account it.
Look complex to more delivered agreeable from you!
By the way, how can we communicate?
wholesale NFL jerseys

Billy Apr 2, 2017

Which nfl wholesale nike jerseys do you ever buy? Now this one site
for sale: cheap soccer jersey replicas

Lara Apr 2, 2017

Wow that was strange. I just wrote an really long comment
but after I clicked submit my comment didn't show up.
Grrrr... well I'm not writing all that over again.
Anyway, just wanted to say wonderful blog!

wholesale NFL jerseys

Carrol Apr 3, 2017

Wonderful beat ! I wish to apprentice at the same time as you amend your site, how can i
subscribe for a weblog web site? The account aided me a appropriate
deal. I have been tiny bit acquainted of this your broadcast offered shiny transparent idea
wholesale NBA jerseys

Regan Apr 3, 2017

Thanks very interesting blog!wholesale hockey jerseys free shipping

Julianne Apr 3, 2017

Everyone loves what you guys are up too. This sort of clever work and
coverage! Keep up the great works guys I've you guys to our blogroll.

wholesale NFL jerseys

Elliot Apr 3, 2017

Very great post. I just stumbled upon your blog and wanted to mention that
I've truly loved browsing your weblog posts. In any case I'll be subscribing to your feed and I hope
you write once more very soon!
wholesale jerseys

Finlay Apr 4, 2017

black football jersey,jerseys from china factory,
including jerseys cheap china and other sports gears.

Monserrate Apr 4, 2017

When is sales for cheap jersey usa? Find site: kids jerseys for cheap

Evelyne Apr 4, 2017

Where to buy nfl jerseys clearance? Come here. cheap kids nhl jerseys

Ruth Apr 4, 2017

Hello, this weekend is good for me, as this point in time i am reading this enormous informative paragraph here
at my residence.
wholesale jerseys

Lachlan Apr 4, 2017

How to get reebok nfl equipment? Tips you may used.

Outlet

Jenna Apr 4, 2017

Ebay same style cheap ohio state jerseys to offer.
Online free shipping - cheap basketball jerseys

Yanira Apr 4, 2017

What's up to all, the contents existing at this web site are actually remarkable for people
experience, well, keep up the good work fellows.

wholesale jerseys

Reina Apr 5, 2017

What is size of mitchell and ness wholesale jerseys may have?
Know more about here - legit china wholesale

Roxanne Apr 5, 2017

I do consider all of the ideas you've offered on your post.
They are really convincing and will definitely work.
Still, the posts are too brief for newbies. May just you please extend them a bit
from subsequent time? Thanks for the post.
wholesale NFL jerseys

Elvia Apr 5, 2017

Ebay same style cheap jersey hangers to offer. Online free shipping - hockey jersey frame

Douglas Apr 5, 2017

Where to buy cheap T. J. Jones jerseys? Come
here. cheap Kevin Pamphile jerseys

Merrill Apr 5, 2017

When is sales for cheap soccer jersey in usa? Find site: cheap jerseys
wholesale site

Elisabeth Apr 5, 2017

This article is genuinely a nice one it assists new net visitors, who are
wishing in favor of blogging.cheap nhl jerseys

Cynthia Apr 6, 2017

Greate pieces. Keep writing such kind of
information on your blog. Im really impressed by it.
Hi there, You have performed an incredible job. I'll certainly digg it and individually
suggest to my friends. I am sure they will be benefited from this web site.

wholesale NBA jerseys

Eleanore Apr 6, 2017

It's appropriate time to make some plans for the future and it's time to be happy.
I have read this post and if I could I desire to suggest you few interesting things
or suggestions. Maybe you can write next articles referring to this article.
I desire to read more things about it!
cheap NFL jerseys

Emmett Apr 7, 2017

Thanks for finally writing about >How To Find a Formula For a Set of Numbers
- Island of Sanity <Loved it!
cheap MLB jerseys

Linnie Apr 7, 2017

Hi there, I found your website via Google even as searching for a related topic,
your site got here up, it appears to be like good. I have bookmarked it in my google bookmarks.

Hello there, just changed into aware of your
blog thru Google, and located that it's truly informative. I
am going to watch out for brussels. I'll be grateful for
those who continue this in future. Lots of folks will probably be benefited from
your writing. Cheers!
cheap NFL jerseys

Joseph Apr 7, 2017

Who do you want to gift for cheap customized nfl jerseys?
Get value into the page: cheap bike jerseys

Karin Apr 8, 2017

Excellent post. I was checking constantly this blog and I'm
impressed! Very helpful information specifically the last part :) I care for such information a lot.

I was seeking this particular info for a long time. Thank you and best of luck.

cheap MLB jerseys

Vicky Apr 9, 2017

team hockey jerseys for sale Amazon Shopper online retail,with link:
wholesale Koa Misi jerseys

Jacklyn Apr 9, 2017

66 Seantrel Henderson Jersey | Welcome to 9 Chris Boswell Jersey site - one of the best discount vintage
jerseys suppliers on the Internet. We specialise in the
manufacture and supply of top quality cheap offer.

Yetta Apr 10, 2017

Thanks , I have recently been looking for info approximately this subject for a long time and yours is
the greatest I have came upon till now. But, what in regards to the conclusion? Are you sure about the supply?

fake jerseys

Anastasia Apr 11, 2017

I go to see each day some web sites and information sites to read content,
except this weblog offers feature based posts.

cheap NFL jerseys

Jayden Apr 11, 2017

whoah this weblog is magnificent i love studying your articles.
Stay up the good work! You know, many individuals are hunting round for this information, you could help them greatly.

wholesale NBA jerseys

Chester Apr 11, 2017

49ers jerseys cheap #7 cheap seahawwk jersey

Dillon Apr 11, 2017

Way cool! Some extremely valid points! I appreciate you writing this write-up plus the rest
of the site is also very good.
wholesale jerseys

Seth Apr 12, 2017

I was curious if you ever considered changing the page layout of your website?
Its very well written; I love what youve got to say.
But maybe you could a little more in the way of content so people could connect with it better.
Youve got an awful lot of text for only having 1 or two images.
Maybe you could space it out better?
cheap MLB jerseys

Tina Apr 12, 2017

Hi there friends, its wonderful article about educationand entirely explained,
keep it up all the time.wholesale nfl jerseys

Veda Apr 12, 2017

Thanks for a marvelous posting! I truly enjoyed reading it,
you will be a great author.I will always bookmark your blog and will eventually come back at some point.
I want to encourage that you continue your great posts,
have a nice evening!
wholesale NBA jerseys

Fiona Apr 12, 2017

I've learn some good stuff here. Definitely price bookmarking for revisiting.
I surprise how a lot effort you place to create the sort of fantastic informative web site.

cheap MLB jerseys

StevenTop Apr 12, 2017

КЛИЕНТСКИЕ БАЗЫ prodawez393@gmail.com Узнайте подробнее по email! Skype: prodawez390
KLIENTSKIE BAZY prodawez393@gmail.com Uznajte podrobnee po email! Skype: prodawez390

Madeline Apr 12, 2017

Right now it sounds like Wordpress is the preferred blogging platform out there right now.
(from what I've read) Is that what you are using on your
blog?wholesale nba jerseys from China

Tandy Apr 12, 2017

Very nice post. I just stumbled upon your blog and wished
to say that I have truly enjoyed browsing your
blog posts. After all I'll be subscribing to your
rss feed and I hope you write again soon!
wholesale jerseys

Alanna Apr 13, 2017

Incredible points. Sound arguments. Keep up the great effort.wholesale football jerseys free
shipping from China

Heidi Apr 13, 2017

Hi there are using Wordpress for your blog
platform? I'm new to the blog world but I'm trying to get started and create my own. Do you
need any coding expertise to make your own blog?

Any help would be greatly appreciated!
cheap MLB jerseys

Guillermo Apr 13, 2017

Your method of describing all in this post
is genuinely good, every one can effortlessly understand it, Thanks a lot.

wholesale nfl jerseys

Angeline Apr 14, 2017

cheap throwback basketball jerseys blank football jerseys cheap

VickieBic Apr 14, 2017

Приветствую пользователей ресурса! Представляем досуг с элитными девушками все подробности можно узнать по мылу dosug-elitei@mail.ru

Tegan Apr 14, 2017

It's going to be ending of mine day, except before finish I am reading this enormous article to improve my know-how.

cheap NFL jerseys

Carmella Apr 14, 2017

Hi there to every , as I am genuinely eager of reading this blog's post to be updated daily.
It includes pleasant material.
Jacki

Leland Apr 14, 2017

I read this article completely regarding the difference of most
up-to-date and earlier technologies, it's remarkable article.

cheap mlb jerseys

Simon Apr 15, 2017

I am genuinely grateful to the owner of this web page who has shared this enormous paragraph at at this place.

fake jerseys

Mohamed Apr 15, 2017

This paragraph is in fact a pleasant one it assists new internet
people, who are wishing for blogging.
cheap jerseys from china

Alejandra Apr 15, 2017

Wow! After all I got a web site from where I be able to in fact take useful facts concerning
my study and knowledge.
cheap jerseys

Christen Apr 15, 2017

After exploring a handful of the articles on your web
site, I honestly appreciate your technique of writing a blog.
I book-marked it to my bookmark webpage list and will be checking back soon. Take
a look at my web site too and let me know what you think.
cheap nfl jerseys

Benjamin Apr 15, 2017

Somebody necessarily lend a hand to make seriously articles I'd state.
That is the first time I frequented your website page and up to now?
I amazed with the research you made to make this particular put up incredible.
Excellent task!
cheap nfl jerseys

Shannon Apr 15, 2017

Very good article. I will be experiencing a few of
these issues as well..
wholesale NBA jerseys

Iola Apr 15, 2017

It's very straightforward to find out any matter on net as compared to books, as I found this piece of writing
at this web site.
cheap MLB jerseys

Charlene Apr 16, 2017

cheap dallas cowboys apparel cheap nike fгom china

Celsa Apr 16, 2017

It's awesome to go to see this web page and reading
the views of all mates concerning this piece of writing,
while I am also eager of getting familiarity.
wholesale jerseys

Scotty Apr 17, 2017

Great place to order 38 Brandon Bolden Jersey by Paypal.
27 Tharold Simon Jersey

Celsa Apr 17, 2017

I love what you guys tend to be up too. Such clever work and reporting!
Keep up the great works guys I've you guys to blogroll.

wholesale NFL jerseys

Patrice Apr 18, 2017

whoah this blog is wonderful i really like reading your posts.
Keep up the good work! You already know, a lot of persons are looking
round for this info, you could help them greatly.
cheap NFL jerseys

Kara Apr 18, 2017

It's remarkable in favor of me to have a site, which is valuable in support of my know-how.

thanks admin
cheap MLB jerseys

May Apr 18, 2017

My spouse and I absolutely love your blog and find a lot
of your post's to be just what I'm looking for.
can you offer guest writers to write content in your case?
I wouldn't mind producing a post or elaborating on a number of the subjects you write with
regards to here. Again, awesome website!
cheap NFL jerseys

Jeannie Apr 18, 2017

Thank you for the good writeup. It in fact was a amusement account
it. Look advanced to more added agreeable from you! However, how can we communicate?

wholesale nba jerseys

Tracy Apr 19, 2017

As the admin of this site is working, no doubt very
soon it will be renowned, due to its feature contents.
cheap MLB jerseys

Kennith Apr 19, 2017

Where to buy custom hockey jerseys canada? Come here.
where can i buy cheap jerseys online

Sam Apr 20, 2017

Hello there I am so delighted I found your web
site, I really found you by error, while I was browsing
on Aol for something else, Anyhow I am here now and would
just like to say many thanks for a incredible post and a all round thrilling blog (I also love the theme/design), I don’t have
time to read it all at the minute but I have bookmarked it and also added your
RSS feeds, so when I have time I will be back to read more, Please do
keep up the superb work.authentic nfl jerseys

Susie Apr 20, 2017

What's up to all, how is the whole thing, I think every one is getting
more from this website, and your views are good in support of new people.

cheap jerseys

Jessie Apr 20, 2017

Thanks for sharing your thoughts on cheap baseball jerseys China.
Regardscheap ncaa jerseys China

Harley Apr 20, 2017

Hello Dear, are you in fact visiting this web page daily, if so after that
you will absolutely get good knowledge.
cheap NFL jerseys

Tim Apr 23, 2017

Hey Mr.Jay Johansen,pretty impressed with the work you've done specially the coding part,would like to know if you could help sharing the code as i'd need a similar one as a part of my engineering project

Shay Apr 26, 2017

It is perfect time to make some plans for the future and it's time to be happy.
I've read this put up and if I may I wish to recommend you few attention-grabbing issues
or tips. Perhaps you could write subsequent articles relating to this
article. I desire to read more issues approximately it!

Visit my site : madden 17

Riley Apr 27, 2017

I've been surfing online greater than 3 hours nowadays,
but I never found any fascinating article like yours.
It is beautiful price sufficient for me. In my opinion, if all site owners and bloggers made excellent content as you did, the net might
be a lot more helpful than ever before.wholesale baseball jerseys free shipping from China

Add Comment

Name
E-mail
Comment